ST JOSEPH'S UNIVERSITY Bengaluru-27

Syllabus for

B.Sc.Chemistry

I- II Semesters

2024-25

Department of Chemistry School of Chemical Sciences St Joseph's University Bengaluru-560 027

Structure of the chemistry course for I-VI semesters of BSc degree

The B.Sc. degree course is a three-year program divided into six semesters. Each semester will consist of 14 weeks of instruction for theory and 11 weeks of instruction for practicals. In Chemistry there will be 10 discipline core papers and 10 practical papers from I to VI semesters. For theory papers, internal assessment (CIA) is given 40% weightage and end semester examination (SE) is given 60% weightage. The practical internal assessment (PIA) is given 60% weightage, and the end semester practical examination is given 40% weightage. The CIA is based on written tests, seminars, assignments, quiz etc. End semester theory examination is for 2 hours duration (60 marks) and practical examination is for 3 hours duration (20 marks).

Semeste r	Code number	Title of the paper	No. of hour s of instr uctio n	No. of hours of teachin g per week	Continuou s internal assessme nt (CIA)	End semest er marks	Total marks
I	CH124	Chemistry I	45	3	40	60	100
	CH1P1	Practical I	44	3	30	20	50
	CH224	Chemistry II	45	3	40	60	100
	CH2P1	Practical II	44	3	30	20	50
III	CH325	Chemistry III	45	3	40	60	100
	CH3P1	Practical III	44	3	30	20	50
IV	CH425	Chemistry IV	45	3	40	60	100
	CH4P1	Practical IV	44	3	30	20	50
V	CH5126	Chemistry V-1	45	3	40	60	100
	CH5P1	Practical V-1	44	3	30	20	50
	CH5226	Chemistry V-2	45	3	40	60	100
	CH5P2	Practical V-2	44	3	30	20	50
	CH5326	Chemistry V-3	45	3	40	60	100
	CH5P3	Practical V-3	44	3	30	20	50
VI	CH6126	Chemistry VI-1	45	3	40	40	100
	CH6P1	Practical VI-1	44	3	30	30	50
	CH6226	Chemistry VI-2	45	3	40	40	100
	CH6P2	Practical VI-2	44	3	30	30	50
	CH6326	Chemistry VI-3	45	3	40	40	100
	CH6P3	Practical VI-3	44	3	30	30	50

Semester	Code number	Title of the	No. of hours	Credit
		paper	of teaching	
			per week	
1	CH124	Chemistry I	3	3
	CH1P1	Practical I	3	2
II	CH224	Chemistry II	3	3
	CH2P1	Practical II	3	2
III	CH325	Chemistry III	3	3
	CH3P1	Practical III	3	2
IV	CH425	Chemistry IV	3	3
	CH4P1	Practical IV	3	2
V	CH5126	Chemistry V-1	3	3
	CH5P1	Practical V-1	3	2
	CH5226	Chemistry V-2	3	3
	CH5P2	Practical V-2	3 3 3 3 3	3 2 3 2
	CH5326	Chemistry V-3	3	3
	CH5P3	Practical V-3	3	2
VI	CH6126	Chemistry VI-1	3	3
	CH6P1	Practical VI-1	3	2
	CH6226	Chemistry VI-2	3 3	2 3 2
	CH6P2	Practical VI-2	3	
	CH6326	Chemistry VI-3	3 3	3 2
	CH6P3	Practical VI-3	3	2

Summary of credits for I-VI semesters

Name of the Degree Program	B.Sc.
Discipline Core	Chemistry
Total Credits for the Program	128

Assessment: Weightage for assessments (in percentage)

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40	60
Practical	60	40

SEP Syllabus: B.Sc. Chemistry – 1st Semester

I SEMESTER THEORY (CH 124)

Semester	I
Paper code	CH 124
Paper title	Chemistry I
Number of teaching hours per week	3
Total number of teaching hours per semester	45
Number of credits	3

Note: 1. Text underlined, bold and in italics corresponds to self-study.

2. Text within parentheses and italics correspond to recall/review.

ANALYTICAL CHEMISTRY

Errors and treatment of analytical data: Errors - determinate and Indeterminate errors, replicate and outlier data points. Precision and accuracy; ways of expressing accuracy - absolute error, relative error; minimization of errors. Statistical treatment of random errors; mean, median, range, standard deviation and variance.

STOICHIOMETRY

(Atomic mass, gram atomic mass, molar mass, formula mass)

Avogadro number, mole concept and chemical equations. Concept of limiting reagents.

2+1 hours

3 hours

PERIODIC TABLE

<u>General electronic configurations of s, p, d and f block elements and position of</u> <u>elements in the long form of periodic table.</u> Atomic radius: covalent, metallic and van der Waal's radii, ionic radii. Effective nuclear charge (qualitative treatment); periodic trends in atomic radii; comparison of ionic radii of isoelectronic ions. Ionisation energy and electron affinity – periodic trends; factors affecting ionisation energy and electron affinity, <u>successive ionisation energies</u>. Electronegativity- Pauling scale (only final equation), calculation of electronegativity, <u>periodic trends</u>.

ATOMIC STRUCTURE

(Historical development of atomic structure, failure of classical mechanics in the study of subatomic particles: Black body radiation, Photoelectric effect).

de Broglie relation and Heisenberg's uncertainty principle. Thought experiment to understand uncertainty principle. Introduction to the principles of quantum (wave) mechanics: Operators - definition, quantum mechanical operators for position, momentum and energy; eigen functions and eigen values.

Schrödinger equation; Born interpretation of wave function (significance of ψ^2); postulates of quantum mechanics. Quantum mechanical treatment of particle in one- dimensional box: Derivation of expressions for energy and normalized wave functions of a particle in 1D box; energy level diagram. Energy expression for a particle in 3D box (no derivation); degeneracy in a cubic box.

Qualitative explanation of the emergence of quantum numbers and their significance; radial and angular components of the wave functions; radial distribution functions of s and p orbitals.

<u>Shapes of s, p and d orbitals. Polyelectron atoms: electron spin and spin</u> <u>quantum</u> <u>number, (n+l) rule, Pauli's exclusion principle, Aufbau principle, Hund's rule,</u> electronic configuration of atoms (Z = 1 to 30).

Exchange energy, pairing energy, promotional energy; symmetric distribution of electrons in atomic orbitals; prediction of the stable electronic configuration in p and d orbitals.

12+2 hours

CHEMICAL BONDING-I

Covalent bonding: octet rule, Lewis structures of molecules and ions (when provided with sequence of atoms), formal charge calculation for different atoms in molecules/ions. *Deviation from octet rule*. Valence bond treatment of hydrogen molecule: qualitative discussion of wave functions, concept of resonance.

<u>Molecular structure: bond length, bond angle, dihedral angle and molecular</u> geometry. Overlapping of atomic orbitals, σ and π bonds.

Hybridisation: sp (BeF₂), sp² (BF₃), sp³ (SiF₄, H₂O, NH₃), sp³d (PCI₅), sp³d² (SF₆); examples of inorganic molecules (AB_n and AB_nL_m type) with and without π -bonds.

VSEPR theory: application to AB_n and AB_nL_m type molecules/ions (A = s or p block element; n ≤ 7).

Molecular orbital (MO) treatment of hydrogen molecule: linear combination of atomic orbitals, bonding and antibonding orbitals, energy level diagram. MO energy level diagram of homonuclear diatomic molecules and ions ($Z \le 9$): bond order and magnetic behaviour of these molecules and ions, correlation of bond order with bond length and bond strength. MO energy level diagram of heteronuclear diatomic molecules – HF and CO.

Metallic bonding: band theory (qualitative), *classification of solids into conductors, insulators and semiconductors based on band theory*.

INTRODUCTION TO ORGANIC CHEMISTRY- I 5+2 hours

Structural formulae: Dash, condensed and bond-line formulae. IUPAC nomenclature of monofunctional and bifunctional organic compounds. <u>Radical functional nomenclature,</u> <u>trivial names and structures of common organic compounds</u>. Resonance theory, curved arrows in resonance structures, rules for writing resonance structures, resonance contribution. <u>Concept of hybridisation: sp³, sp², sp; the structure and bond lengths</u> <u>of methane, ethane, ethene and ethyne.</u>

Physical properties and molecular structures of organic compounds, ionic compounds: ion–ion forces, intermolecular forces (van der Waals forces), boiling points.

References:

- Principles of Inorganic Chemistry; B. R. Puri; L. R. Sharma and K. C. Kalia; 33rd Edition, Vishal Publishing Co., 2020.
- 2. Concise Inorganic Chemistry; J. D. Lee; 5th Edition, John Wiley and Sons Ltd; 2014.
- 3. Chemistry; R. Chang: 10th Edition, McGraw Hill Education India; 2022.
- Principles of Physical Chemistry; B. R. Puri; L. R. Sharma and M. B. Pathania, 48th Edition, Vishal Publishing Co., 2021.
- 5. Atkins' Physical Chemistry; P. Atkins and J. Paula; 11th Edition, Oxford University Press, 2018.
- Physical Chemistry for Chemical and Biological Sciences: Raymond Chang; 1st Indian Edition, Viva Books Pvt. Ltd., 2015.
- Organic Chemistry; Graham Solomons, C. Fryhle, S. Snyder, 12th Edition, Wiley, 2017.
- 8. Organic Chemistry; P. Y Bruice, 8th Edition, Pearson Education India, 2020.

Learning Outcomes: At the end of the course, the student should be able to

LO1	Knowledge	 Recall the concepts of atomic structure, periodic table of elements, chemical bonding in molecules, concepts of stoichiometry and list the types of hybridisations, VSEPR principles, MO theory fundamentals, types of errors, rules for writing electronic configuration, naming organic compounds. Identify the different types of orbital overlap: end-to-end (forming sigma bonds) and side-to-side, name the different blocks and families of elements, examples of molecules exhibiting each type of hybridization.
		State the basic principles of VSEPR theory Define key concepts in Molecular Orbital (MO) theory, the
LO2	Understand	Octet Rule, bond length, bond angle, dihedral angle. Explain the relationship between molecular structure and physical properties, concepts, laws concerning atoms, molecules, atomic structure, chemical bonding, periodic table, stoichiometry, hybridisation concepts, VSEPR theory, and MO theory.
		Describe the process of hybridisation and its significance in determining molecular geometry.
		Illustrate the energy level diagrams of homonuclear diatomic molecules/ions ($Z \le 9$) and heteronuclear diatomic molecules – HF and CO.
		Outline the differences between conductors, semiconductors and insulators based on band theory.
LO3	Apply	Apply the bonding theories in predicting structure, bonding and magnetic properties of molecules, laws and relationships to real chemical systems and compute properties. IUPAC rules to name simple and complex organic compounds, draw Lewis structures for common ions, including polyatomic ions like NH ₄ ⁺ , SO ₄ ²⁻ , and NO ₃ ⁻ , draw resonance structures for given molecules.
		Calculate formal charges for atoms within a molecule or ion, empirical and molecular formulas,
		Predict the shapes of molecules based on their hybridisation states, the behaviour of solids as conductors, semiconductors and insulators based on band theory

		Construct MO energy level diagrams for simple diatomic molecules like H ₂ .
		Interpret the bond order and magnetic behaviour of homonuclear diatomic molecules/ions ($Z \le 9$) from molecular energy level diagrams.
		Relate bond order with bond length and bond strength.
LO4	Analyse	Validate the quality of analytical data using statistical methods
		Compare different resonance structures of a molecule or ion, using formal charges. Compare the molecular geometries of different molecules based on their hybridisation states.
		Analyse the influence of lone pairs versus bonding pairs on predicting molecular shape, the impact of functional groups on reactivity and properties, the effects of resonance on molecular stability and reactivity.
		Evaluate the bond length and magnetic properties of molecules/ ions based on bond order.
		Examine the chances of forming/ stability of a diatomic molecule/ion based on MOT.
LO5	Evaluate	Predict stable electronic configuration in p and d orbitals with the help of various energy terms
		Construct molecular shapes using hybridisation concepts for complex molecules and molecular energy level diagrams for homonuclear diatomic molecules/ions (Z: 10-16).
LO6	Create	Place hitherto unknown element in the periodic table and predict its physical and chemical properties.
		Judge the effectiveness and limitations of VSEPR and molecular orbital theories in explaining molecular structures and properties.
		Justify the formation of certain molecules like NO, that cannot be successfully explained by either the Lewis electron-pair approach or valence bond theory, on the basis of MOT.
		Assess the bond orders and stability of homonuclear diatomic molecules/ions (Z: 10-16).

I SEMESTER PRACTICALS (CH 1P1)

Semester	1
Paper code	CH 1P1
Paper title	Chemistry Practical I
Number of Lab hrs per week	3
Total number of Lab hrs per semester	33
Number of credits	2

List of Experiments

- 1. Volumetric calibrations and statistical treatment of data.
- **2.** Estimation of sodium hydroxide using hydrochloric acid.
- 3. Estimation of sodium hydroxide using potassium hydrogen phthalate.
- 4. Estimation of potassium permanganate using oxalic acid.
- 5. Estimation of iron (II) using potassium dichromate by internal indicator method.
- 6. Estimation of sodium carbonate and sodium bicarbonate in a given mixture.
- 7-10. RBPT experiments.
- **11.** Demonstration of an auto-titrator during one of the RBPT sessions.
- **12.** Viva/repetition.

Learning Outcomes: At the end of the course, the student should be able to

	V	At the end of the course, the student should be able to
LO1	Knowledge	Recall the mole concept and define errors, accuracy, precision and significant figures. Calculate standard deviation and relate these to
		5 5
		the concept of volumetric analysis.
		Define key terms related to volumetric titrations (e.g., titrant,
		analyte, equivalence point).
		List common indicators used in titrations.
LO2	Understand	Compare various ways of expressing concentration and explain the
		differences in them.
		Explain the principle and significance of volumetric titrations.
LO3	Apply	Identify the number of significant figures and solve numerical
		problems based on mole concept and chemical equations.
		Calculate the concentration of an unknown solution from titration
		data.
LO4	Analyse	Apply the theoretical concepts to develop experimental skills in
		carrying out volumetric analysis independently and draw
		inference/suggest a solution.
		Differentiate between types of titrations (e.g., acid-base, redox).
LO5	Create	Propose a research problem based on volumetric analysis, design
		an experiment and develop a method, discuss in a group and
		improvise the methodology, carryout independent work and create
		a personalized mode of presentation of results
LO6	Evaluate	Assess the accuracy and precision of titration results. Assess the
		errors in and calibrate the glassware used for experiments and
		estimate the amount of chemical substance present in a solution of
		unknown concentration.

SEP Syllabus: B.Sc Chemistry – 2nd Semester

Semester	11
Paper code	CH 224
Paper title	Chemistry II
Number of teaching hours per week	3
Total number of teaching hours per semester	45
Number of credits	3

II SEMESTER THEORY (CH 224)

Note: 1. Text underlined, bold and in italics corresponds to self-study.

2. Text within parentheses and italics correspond to recall/review.

ACIDS, BASES AND SOLVENTS

5+1 hours

Theories of acids and bases: Lowry - Brønsted concept, conjugate acid-base pairs, amphiprotic substances, relative strengths of acid-base pairs, solvent system concept of acids and bases, examples. Lewis concept - types of molecules or species that can act as Lewis acids and Lewis bases, Pearson's Hard and Soft Acid - Base concept. Characteristics of hard and soft acids and bases, HSAB principle and applications - stability of complexes, prediction of coordination in complexes of ambidentate ligands, predicting feasibility of a reaction, prediction of hardness and softness. Solvent properties - liquid range, dielectric constant, solvent polarity, classification of solvents. Protic solvents – autoionisation of protic solvents (H₂O, liq. NH₃). Aprotic solvents – classification with examples. Levelling effect of solvents - explanation, levelling solvents and differentiating solvents. Liquid NH₃ - autoionisation, acid-base reactions, solvation, solvolysis (comparison with H₂O in each case). <u>Solutions of alkali metals in liquid</u>

ammonia. Advantages and disadvantages of liq. NH₃ solvent. Liquid SO₂ as solvent - autoionisation and acid base reactions. Anhydrous HF - autoionisation, acid-base reactions.

CHEMICAL BONDING - II

lonic bonding - lattice energy, explanation of melting point of simple ionic solids based on lattice energy. Born - Lande equation (no derivation). Born-Haber cycle for NaCl, <u>*KBr, Kl*</u>, MgO, CaCl₂. Covalent character of ionic bonds - polarisation and polarizability, Fajan's rules. Partial ionic character of covalent bonds, calculation based on Pauling electronegativity concept, dipole moment.

THE FIRST LAW OF THERMODYNAMICS

Introduction - terminology in thermodynamics - phase, system and surroundings. Types of systems - open, closed and isolated systems; homogeneous and heterogeneous systems, macroscopic properties. State of a system, state variable, extensive and intensive properties, thermodynamic equilibrium. Thermodynamic processes - isothermal, adiabatic, isochoric, isobaric and cyclic. Reversible, irreversible and spontaneous processes. Concept of heat and work, sign convention. State functions and path functions, exact and inexact differentials. Internal energy, first law of thermodynamics - statement and mathematical form. Enthalpy of a system, heat capacity, relation between C_p and C_v. Expression for first law of thermodynamics for isothermal, adiabatic, isochoric and cyclic processes. Work done in i) reversible expansion and compression, *ii) irreversible isothermal expansion and compression of an ideal gas.* Zeroth law and absolute temperature scale. Kirchoff's law-statement (no derivation).

GASEOUS STATE

<u>The behaviour of real gases: Deviation from ideal gas behaviour. Compressibility</u> <u>factor (Z)</u> and its variation with pressure for different gases. Causes of deviation from ideal behaviour, van der Waals equation of state (no derivation). Critical phenomena – Andrew's isotherms of CO_2 , critical constants and their relation with van der Waals

3+1 hours

3+1 hours

7+2 hours

constant (no derivation). Joule-Thomson effect. Inversion temperature, application of Joule-Thomson effect.

LIQUID STATE AND LIQUID MIXTURES

5+1 hours

Viscosity, coefficient of viscosity and surface tension of a liquid: definition. Variation of effect of temperature and solute in viscosity and surface tension of a liquid. <u>*Raoult's law, mathematical formulation*</u>. Vapour pressure curves of ideal and type I solutions, nonideal solutions and completely miscible liquids. Boiling point - composition curves of completely miscible liquids. Determination of molar mass using elevation in boiling point. Fractional distillation of binary liquid mixtures. Type II and Type III azeotropic mixtures (minimum boiling and maximum boiling azeotropes, e.g. water-ethanol and HCI-H₂O). Solubility of partially miscible liquid pairs; Critical solution temperature (CST), upper critical solution temperature (UCST): phenol-H₂O system, lower critical solution temperature H₂O system; lower CST and upper CST: nicotine-H₂O system. Effect of impurity on CST. <u>*Immiscible liquid pairs: Nernst distribution law, effect of association and dissociation of solute on distribution (derivation).*</u>

INTRODUCTION TO ORGANIC CHEMISTRY - II 6+2 hours

Electronic displacements: Inductive effect, electromeric effect and hyperconjugation, (*resonance*). Hückel's rule, aromatic, antiaromatic and nonaromatic species with examples. Strengths of organic acid and bases: Comparative study with emphasis on factors affecting pK_a values. Relative strength of aliphatic and aromatic carboxylic acids - acetic acid and chloroacetic acid, <u>acetic acid and propionic acid, acetic acid and benzoic acid</u>. Relative strengths of ammonia, aliphatic and aromatic amines. Types of bond cleavages - homolytic and heterolytic cleavages; reaction intermediates - carbocations, carbanions and free radicals; generation, structure and stability. <u>Types of reagents - electrophiles, nucleophiles.</u> Types of organic reactions - substitution, addition, elimination and rearrangement: examples.

ALKANES AND CYCLOALKANES

<u>Alkanes: Classification of carbon and hydrogen atoms in hydrocarbons. Physical</u> <u>properties of alkanes and cycloalkanes</u>. Nomenclature of monocyclic cycloalkanes. Sigma bonds and bond rotation, meaning of conformations, Newman and Sawhorse projections. Conformational analysis of ethane and butane. Relative stabilities and ring strain of cyclopropane, cyclobutane and cyclopentane. Chair and boat conformations of cyclohexane and substituted cyclohexanes: axial and equatorial hydrogens. Conformational analysis of methyl cyclohexane, 1,3 - diaxial interactions of *tert*-butyl group.

References:

- 1. Principles of Inorganic Chemistry; B. R. Puri; L. R. Sharma and K. C. Kalia; 33rd Edition, Vishal Publishing Co., 2020.
- Principles of Physical Chemistry; B. R. Puri; L. R. Sharma and M. S. Pathania, 48th Edition, Vishal Publishing Co., 2021.
- 3. Atkins' Physical Chemistry; P. Atkins and J. Paula; 11th Edition, Oxford University Press, 2018.
- 4. Chemical Thermodynamics: Classical, Statistical and Irreversible; J. Rajaram and J. C. Kuriacose; 1st Edition, Pearson Education India, 2013.
- 5. Physical Chemistry through Problems; S. K. Dogra and S. Dogra; 2nd Edition, New Age International (P) Ltd. Publishers, 2015.
- 6. Physical Chemistry for Chemical and Biological Sciences: R. Chang; 1st Indian Edition, Viva Books Pvt. Ltd., 2015.
- 7. Thermodynamics for Chemists, S.Glasstone, EWP, 2008.
- 8. Organic Chemistry; G. Solomons, C. Fryhle, S. Snyder, 12th Edition, Wiley, 2017.
- 9. Organic Chemistry; P. Bruice, 8th Edition, Pearson Education India, 2020.
- 10.Organic Chemistry; B. Mehta and M. Mehta, 2nd Edition, PHI Learning private limited, 2021.
- 11. Organic Chemistry; Jr. L. G. Wade, J. Simek, M Singh, 9th Edition, Pearson Education India, 2019.
- 12. Organic Chemistry, J. Clayden, N. Greeves and S. Warren, 2nd Edition, Oxford University Press, 2014.

Learning Outcomes: At the end of the course, the student should be able to

		Define macroscopic properties, state variable, extensive and
LO1	Knowledge	intensive properties, types of systems (open, closed, isolated), Inductive effect, electromeric effect,
		hyperconjugation, aromatic, antiaromatic and nonaromatic
		species with examples, homolytic and heterolytic cleavages;
		reaction intermediates- carbocations, carbanions and free radicals, electrophiles, nucleophiles, and conformations,
		Inversion temperature, lattice energy
		Draw the structures to represent Newmann and Sawhorse conformations of alkane and cycloalkane.
		Recognize and list the type of electronic displacements in organic molecules, cycloalkane from the nomenclature, the concept of ideal gases and real gases, meaning of ionic bonding
		Draw the structures to represent the electronic
		displacements, Newmann and Sawhorse conformations,
		draw resonance/canonical structures for the given molecule, Andrew's isotherms of CO ₂ , Born-Haber cycle for NaCl, MgO,
		CaCl ₂
		State HSAB principle, First law of thermodynamics, Zeroth
		law, Kirchoff's law, Raoult's law, Nernst Distribution law. van der Waals equation of state, Joule-Thomson effect, Born-
		Lande equation, Hückel's rule
		List the characteristics of hard and soft acids and bases,
		protic and aprotic solvents, the factors affecting the strengths of acids and bases, types of bond cleavage, types of organic
		reactions, classes of bonded hydrogen atoms, the criteria for
		the validity of Nernst distribution law, macroscopic properties of the system
		Define Lowry-Brønsted acids and bases, levelling effect of solvents, 'conformations' surface tension, viscosity,
		coefficient of viscosity, critical solution temperature
		Recall Raoult's law
		Identify Type I, Type II and Type III azeotropic mixtures, state variables
		Explain Type I azeotropic mixture, Type II azeotropic
		mixture, Type III azeotropic mixture, surface tension of a

		liquid, the effect of solute on the surface tension of a liquid, the effect of temperature on surface tension of a liquid, the effect of temperature on the viscosity of a liquid, the effect of solute on the viscosity of a liquid, the various thermodynamic processes: isothermal, adiabatic, isochoric and cyclic, the concept of heat and work with sign conventions, thermodynamic equilibrium, the relationship between C_p and C_v
LO2	Understand	Discuss the solvent system concept of acids and bases, thermodynamic processes, the factors influencing pK _a , the difference between Type I and Type II azeotropic mixtures; the difference between Type II and Type III azeotropic mixtures; the difference between Type I and Type III azeotropic mixtures; the difference between Type I and Type III azeotropic mixtures; the difference between Type I and Type III azeotropic mixtures; the difference between the lower CST and upper CST, causes of deviation of real gases from ideal behaviour, critical constants and their relation with van der Waals constant, applications of Joule-Thomson effect, explanation of melting point of simple ionic solids based on lattice energy
		Describe the relationship between the concentration of phenol in water and CST, the relationship between the concentration of nicotine in water and CST
		Predict the molecule as aromatic, antiaromatic or non- aromatic, predict the product of the reaction based on the type of organic reaction, variation of real gases with pressure
		Classify state functions and path functions, the types of solvents, the types of reactions, types of carbons and hydrogens
		Interpret the mechanism behind how the Type I, Type II and Type III azeotropic mixture plots vary with each other.
		Compare the properties of protic and aprotic solvents, the strengths of organic acids and bases, relative stability of conformations of alkanes and cycloalkanes, ideal and real gases based on their behaviour under different conditions, melting point of different ionic solids
		Distinguish reversible and irreversible processes, electrophiles and nucleophiles, axial and equatorial bonds, exact and inexact differentials, state function and path function, reversible and irreversible processes.

		 Understand the relationship between size, shape, mass of molecules with the viscosity of the liquid, the relationship between temperature and viscosity, the relationship between temperature and surface tension Outline the concept of lower CST; upper CST; azeotropic mixtures
LO3	Application	Apply HSAB principle to predict the stability of complexes, Kirchoff's law to solve problems in thermodynamics, Hückel's rule to cyclic organic molecules, pKa to order the strengths of acids and base, the data of surface tension values to understand the nature of the liquid the date of viscosity to understand the nature of the liquid, Joule-Thomson effect to different gases, Born-Lande equation to calculate lattice energy of different ionic solids zeroth law to find the absolute temperature scale
		Examine the correctness of electronic displacements and the resultant structures, the relationship between internal energy and enthalpy, the behaviour of different gases under variable pressure conditions
		Sketch the energy profile diagram of conformations of ethane, butane and cycloalkanes
		Select the hard and soft acids and bases from a given list, the electrophiles and nucleophiles from a list of reagents, the most acidic and basic compound, the most stable conformation of the given alkane and cyclohexane
		Predict the feasibility of a reaction using HSAB concept, the stable conformer in the presence of a bulky group, lattice energy of different ionic solids
		Relate C_p and C_v , the stability of cycloalkanes to ring strain, stability of conformations of cyclohexane to the presence of a bulky group and position of the group
LO4	Analysis	Analyse work done in irreversible expansion and compression of an ideal gas, reversible isothermal expansion and compression of an ideal gas. Acid-base reactions, the conformational analysis of ethane, butane and cyclohexane, the effect of the presence of bulky groups on the stability of the conformational structure, the deviation of real gases from ideal behaviour, total energy associated with formation of ionic solid based on Born-Haber cycle

		Interpret the nature of the azeotropic mixture by analysing a given plot	
LO5	Create/Synthesis	Construct energy profile diagram of the given alkane Andrew's isotherms of given gas, Born-Haber cycle for giver ionic solid	
		Design a reaction to obtain a certain intermediate for a product from a given compound.	
		Modify the pK_a value of a given organic acid by fine tuning the substitutions	
LO6	Evaluate	Evaluate the reasons for relative acid and base strength, stability of specific conformations of ethane, butane and substituted cyclohexane, the cause of deviation of real gases from ideal behaviour, melting point behaviour of different ionic solids, the effectiveness of the first law of thermodynamics in real world systems	
		Assess the behaviour of an aromatic, anti-aromatic and a non-aromatic compound, steric hindrance by methyl and <i>t</i> -butyl groups, the behaviour of any gas under given conditions of temperature and pressure, accuracy of the thermodynamic calculations to experiments	

II SEMESTER PRACTICALS (CH 2P1)

Semester	II
Paper code	CH 2P1
Paper title	Chemistry Practical II
Number of Lab hrs per week	3
Total number of Lab hrs per semester	33
Number of credits	2

List of experiments

- **1.** Demonstration on mixing behavior of liquids and separation of liquids using their boiling points.
- 2. Determination of density using specific gravity bottle and viscosity of liquids using Ostwald's viscometer.
- **3.** Determination of the density using specific gravity bottle and surface tension of liquids using stalagmometer.
- **4.** Determination of partition/distribution coefficient of acetic acid in water and butanol.
- **5.** Determination of composition of sucrose solution by viscosity method using Ostwald's viscometer.
- 6. Determination of CST of phenol- water system.
- **7.** Determination of molar mass of an electrolyte by elevation in boiling point method.
- **8.** Determination of percentage composition of sodium chloride solution by miscibility temperature measurements of phenol water system.
- **9.** Determination of transition temperature of a salt hydrate by thermometric method.
- **10.** Recrystallisation of organic compounds and determination of purity by melting point.
- **11.** Estimation of purity of aspirin.
- 12. Repetition/viva.

References

- 1. Principles of Physical Chemistry, B. R. Puri; L R Sharma and M. S. Pathania, 48th Edition, Vishal Publishing Co., 2021.
- 2. Physical Chemistry laboratory manual: an interdisciplinary approach, A. Anand, R. Kumari, I. K. International Pvt Ltd., 2019.
- 3. Experiments in Physical Chemistry, C. W. Garland, J. W. Nibler, D. P. Shoemaker, 8th Edition; McGraw-Hill: New York, 2003.
- 4. Experimental Physical Chemistry, A. M. Halpern, and G. C. McBane, 3rd Edition; W.H. Freeman and Co.:New York, 2003.

Learning	Cognitive Level	At the end of the semester, the student should be able
Objective LO1	Knowledge	toDefine surface tension, viscosity, coefficient of viscosity, critical solution temperature, partition coefficientRecognize the formation of homogeneous and
		heterogeneous mixtures, miscible and partially miscible liquids, the conditions under which Nernst distribution law is valid.
		State Nernst distribution law
		Identify the factors affecting the mixing of liquids , viscosity iii) surface tension, recystallisation of solids, CST, partition coefficient
LO2	Understand	Discuss the concept of miscibility and immiscibility in liquids, how impurities affect the boiling point of liquids, the difference between the lower CST and upper CST
		Interpret phase behaviour of the phenol-water system with varying concentrations of sodium chloride
	Application	Understand method of using a stalagmometer to determine the surface tension of liquids the relationship between temperature and viscosity, the relationship between temperature and surface tension how to use a specific gravity bottle to measure the density of liquids accurately, the concept of partition coefficient, the concept of a) lower CST; b) upper CST, concept of transition temperature in salt hydrates , relationship between purity and melting point, phase transitions, concept of colligative properties
LO3	Application	Examine the composition of a solute in a solution using miscibility temperature measurements, behaviour and properties of binary mixtures, recrystallization conditions to maximize yield and purity
		Sketch temperature-composition graphs, temperature vs. time graphs to determine to determine the transition temperature, viscosity versus concentration graphs

		Relate partition coefficient distribution of a solute between two immiscible solvents, density of liquids with viscosity, miscibility and CST
LO4	Analysis	Analyse the relationship between density and viscosity in different liquids, factors affecting surface tension and its implications in various chemical processes, the phase behavior of the phenol-water system, the data to calculate the molar mass and understand its significance in solution chemistry, the thermal properties of salt hydrates and their applications, the effect of temperature on solubility of partially miscible liquids, how different solvents affect the recrystallization process
LO5	Create/Synthesis	Develop practical skills in performing distillation and analysing the purity of separated liquids skills in preparing and analysing a two-phase system, skills in using Ostwald's viscometer for compositional analysis skills in interpreting phase diagrams and miscibility data skills in recrystallization to purify compounds proficiency in analysing the purity of aspirin using titration methods
LO6	Evaluate	Evaluate partition coefficient and understand its relevance in extraction processes, how impurity affects CST, the practical applications of surface tension measurements in industries

QUESTION PAPER PATTERN-ESE

St. Joseph's University, Bengaluru-27 B.Sc. End Semester Examination (2024-25 onwards) CHEMISTRY

Time: 2 hours Instructions

Max. Marks: 60

1. Question paper has three Parts. Answer all the Parts.

2. Write chemical equations and diagrams wherever necessary.

PART-A

Answer any **SEVEN** of the following NINE questions. Each question carries **TWO** marks.

 $(7 \times 2 = 14)$

PART-B

Answer any **SIX** of the following EIGHT questions. Each question carries **SIX** marks.

 $(6 \times 6 = 36)$

PART-C

Answer any **TWO** of the following THREE questions. Each question carries **FIVE** marks.

 $(2 \times 5 = 10)$

Note: The questions must have the weightage of 35% portions from the mid semester exam portion and 65% weightage from the portion covered after mid semester examination.

MID-SEM EXAM PATTERN

St. Joseph's University, Bengaluru-27 B.Sc. Mid Semester Examination (2024-25 onwards) CHEMISTRY

Time: 1 hour Instructions

Instructions

1. Question paper has three Parts. Answer all the Parts.

2. Write chemical equations and diagrams wherever necessary.

PART-A

Answer any FOUR of the following SIX questions. Each question carries TWO marks.

(4 x 2=8)

PART-B

Answer any **TWO** of the following THREE questions. Each question carries **SIX** marks.

 $(2 \times 6 = 12)$

PART-C

Answer any **ONE** of the following TWO questions. Each question carries **FIVE** marks.

 $(1 \times 5 = 5)$

EVALUATION PATTERN - PRACTICALS

	Weightage in Marks
Formative Assessment (Internal assessment)	30 (20 CIA + 10 Viva-voce)
Practicals	
End semester practical examination (ESPE)	20
Total	50

Max. Marks: 25