ST JOSEPH'S UNIVERSITY, BENGALURU-27.

DEPARTMENT OF BIOTECHNOLOGY

SYLLABUS FOR UNDERGRADUATE PROGRAMME

For Batch 2024-2027

(STATE EDUCATION POLICY)

SUMMARY OF CREDITS IN Biotechnology

		DEPA	ARTMENT OF BIO (UG)	OTECHNOLOG	Y			
Semester 1	Code Number	Title	(2024-202 No. of Hours of Instructions	27) Number of Hours of teaching per week	Numb er of credits	Continuous Internal Assessment (CIA) Marks	End Semester Marks	Total marks
Theory	BT124	Introduction to Biomolecules and Microorganisms	45	03	03	40	60	100
Practical		Techniques in Biochemistry and Microbiology	33	03	02	25	25	50
Total Number of credits:		05						
Semester2	Code Number	Title	No. of Hours of Instructions	Number of teaching Hrs /week	Number of credits	Continuous Internal Assessment (CIA) Marks	End Semester Marks	Total marks
Theory	BT224	Fundamentals of Cell Biology and Analytical Techniques	45	03	03	40	60	100
Practical		Techniques in Cell Biology	33	03	02	25	25	50
Total Num	ber of credits:				05			

Semester	I
Paper Code	BT124
Paper Title	Introduction to Biomolecules and
	Microorganisms
Number of Teaching Hours per week	03 hours Theory and 03 hours Practical
Number of Teaching hours per semester	45
Number of Credits	3+2

BIOTECHNOLOGY UG SYLLABUS-SEP-2024 onwards

Objective of the Paper: This paper has two course subjects. The syllabus covers Biochemistry in both practical and theoretical aspects. It introduces biomolecules that are vital for understanding cell systems and thus providing the foundations of employing them in the industry. This paper also aims to introduce students to basic concepts in Microbiology, with key emphasis on instrumentation and analytical techniques used in microbial laboratories. The course also covers key concepts in antimicrobial agents and assessment of antimicrobial activity, besides providing opportunities for hands-on experiments involving isolation, culturing, control and study of microorganisms.

Content of Course: BT124: Introduction to Biomolecules and Microorganisms	
Biomolecules	30Hrs
Unit 1: Introduction	2 hrs
Introduction to Biochemical evolution, Prebiotic reactions and molecules, Urey Miller Experiment.	1 hr
Biochemical composition of living organisms, Role of matter in biological systems, Chemical bonds in biological systems.	1 nr
Unit 2: Carbohydrates	4 hrs
Classification, structure of monosaccharides (trioses-PGA, DHAP, pentoses-Ribose, Deoxy-Ribose and hexoses-Glucose, Galactose, Fructose), Disaccharides-Sucrose, Maltose, Lactose and Polysaccharides-Starch, Glycogen, Occurrence and functions. Active Learning : Blood glucose control-Role of insulin and glucagon, Glucose Uptake, Types of GLUT with functions	3 hrs (1 hr)
Unit 3: Proteins	7 hrs
Classification and Structure of Amino acids and proteins, Zwitter ion concept, Isoelectric pH, Concept of pKa and Buffers Levels of organization of proteins- Peptide Bond, Primary and secondary structure, Tertiary and quaternary structures, Denaturation. Active Learning- Analysis of Stable Structures of Proteins	4 hrs 2 hrs (1 hr)
Unit 4: Enzymes	6 hrs

Classification – types and functions, enzyme units. Factors affecting Enzyme Action.	2 hr
Cofactors – types, examples (NAD, FAD) with functions. Active site, Role of tertiary	
structure.	
Mechanisms of enzyme catalysis-Models: Lock and Key and Induced fit.	2hrs
Concepts of Km and Vmax. Enzyme inhibition – competitive, uncompetitive and	2hrs
Non-competitive	
Unit 5: Lipids	5 hrs
Classification, functions and biological role of lipids	2 hrs
Classification and Structure of fatty acids	1 hr
Properties of phospholipids, sphingolipids, glycolipids, steroids, amphipathic lipids, cholesterol Active Learning : Properties of triacylglycerols and test for purity of lipids.	1 hr
	(1 hr)
Unit 6: Nucleic Acid	6 hrs
Chemical composition, structures; nucleosides, nucleotides; Watson & Crick model,	3 hrs
Types of DNA – A, B and Z	
Types of RNA (mRNA, tRNA) with structure and functions	2hr
Active Learning: Discussion on the original paper of Watson and Crick	(1 hr)
Introduction to Microorganisms	15 hrs
Unit 1: History of Microbiology	1 Hr
The past and present of Microbiology, Case study on HIV's evolutionary past	
UNIT 2-Prokaryotic microorganisms and Viruses	5 Hrs
Bacteria-Cell wall, Capsule, Flagella, Fimbriae, Pili, Plasmids, Endospore, Reserve	2 hr
food. Virus- General Characteristic, life cycle of bacteriophage -lytic and lysogeny	2 hr
Active Learning- Structure and lifecycle of viruses	(1hr)
UNIT 3-Eukaryotic microorganisms	2 Hrs
General characteristics of Algae, Fungi and Protozoa	
Unit 4- Microbial growth and Control	3 Hrs
Microbial growth-Growth curve and kinetics	1 hr
Sterilization techniques- Definition of terms, Physical methods- Heat & radiation	
chemical Methods- Alconol, aldenydes, phenols, halogen, sterilizing gases as antimicrobial	
agents	2 hrs
agents Unit 5- Antimicrobial agents and Microbial resistance	2 hrs 4 hrs
Chemical Methods- Alcohol, aldenydes, phenois, halogen, sterilizing gases as antimicrobial agents Unit 5- Antimicrobial agents and Microbial resistance Mode of action of antimicrobial agents:	2 hrs 4 hrs
Chemical Methods- Alcohol, aldenydes, phenols, halogen, sterilizing gases as antimicrobial agents Unit 5- Antimicrobial agents and Microbial resistance Mode of action of antimicrobial agents: Antifungal agents- Amphotericin B and Griseofulvin	2 hrs 4 hrs
Chemical Methods- Alcohol, aldenydes, phenols, halogen, sterilizing gases as antimicrobial agents Unit 5- Antimicrobial agents and Microbial resistance Mode of action of antimicrobial agents: Antifungal agents- Amphotericin B and Griseofulvin Antibacterial agents- Plazomicin and Imipenum	2 hrs 4 hrs 2 hrs
Chemical Methods- Alcohol, aldenydes, phenols, halogen, sterilizing gases as antimicrobial agents Unit 5- Antimicrobial agents and Microbial resistance Mode of action of antimicrobial agents: Antifungal agents- Amphotericin B and Griseofulvin Antibacterial agents- Plazomicin and Imipenum Mechanism of multi-drug resistance	2 hrs 4 hrs 2 hrs 1 hr (1 hr)

Practical II: BTP124: Techniques in Biochemistry and Microbiology

- 1. Introduction to molarity, molality and normality, Calculations for solution preparations, Instruments: Handling of pipettes, burettes, colorimeter and spectrophotometer.
- 2. Estimation of Reducing Sugars by DNS method.
- 3. Estimation of protein by Biuret method.
- 4. Enzyme Analysis, Kinetics.

5. Handling and applications of important instruments (biological safety cabinets, autoclave, incubator, hot air oven, light microscope, pH meter) used in the microbiology and Biotechnology laboratory.6. Preparation of culture media for bacterial and fungal isolations, plate preparations and open air culture.

7. Colony characteristics study of bacteria and fungi from air exposure plate.

8. Bacteria- Gram staining Staining techniques, Fungi - Lacto-phenol cotton blue staining

9. Pure culturing techniques: Plating techniques and maintenance of individual cultures.

10. Biochemical Tests – IMViC, Starch hydrolysis, Catalase test, Gelatin hydrolysis, TSI agar and amylase production.

Text Books / References

1. Atlas RM. (1997). Principles of Microbiology. 2nd edition. WM.T. Brown Publishers.

2. Black JG. (2008). Microbiology: Principles and Explorations. 7th edition. Prentice Hall

3. Madigan MT, and Martinko JM. (2014). Brock Biology of Micro-organisms. 14th edition. Parker J. Prentice Hall International, Inc.

4. Pelczar Jr MJ, Chan ECS, and Krieg NR. (2004). Microbiology. 5th edition Tata McGraw Hill.

5. Srivastava S and Srivastava PS. (2003). Understanding Bacteria. Kluwer Academic Publishers, Dordrecht

6. Stanier RY, Ingraham JL, Wheelis ML and Painter PR. (2005). General Microbiology. 5th edition McMillan.

7. Tortora GJ, Funke BR, and Case CL. (2008). Microbiology: An Introduction. 9th edition Pearson Education.

8. Willey JM, Sherwood LM, and Woolverton CJ. (2013). Prescott's Microbiology. 9th edition. McGraw Hill Higher Education.

9. Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition. Pearson Education Limited

10. Microbiology- Concepts and applications by Paul A. Ketchum, Wiley Publications

11. Fundamentals of Microbiology -Frobisher, Saunders & Toppan Publications

- 12. Introductory Biotechnology-R.B Singh C.B.D. India (1990)
- 13. Fundamentals of Bacteriology Salley
- 14. Frontiers in Microbial technology-P.S. Bison, CBS Publishers.
- 15. Biotechnology, International Trends of perspectives A. T. Bull, G.
- 16. General Microbiology –C.B. Powar
- 17. Principles of Biochemistry by Lehninger
- 18. Biochemistry by Stryer
- 19. Brooker, Wiemaier G, Stiling, Principles of Biology

Semester	П
Paper Code	BT224
Paper Title	Fundamentals of Cell Biology and Analytical
	Techniques
Number of Teaching Hours per week	03 hours Theory and 03 hours Practical
Number of Teaching hours per semester	45
Number of Credits	3+2

Objective of the Paper: This paper has been designed to expose students to a broad range of cell biological themes. The topics will be covered in depth, with references to the relevant techniques and disease implications. These will provide the students a firm handle of cell biological principles and the ability to understand and analyze diverse biological phenomenon.

Fundamentals of Cell Biology	30 Hrs	
Unit 1: Cell biology basics	2 hours	
Cell theory, cell size and volume, cellular organization	1 hr	
Eukaryotes vs prokaryotes, compartmentalization.		
Unit 2: Cell structure and function	4 hours	
Introduction to eukaryotic cells, basics of cell organelles	1 hr	
Nucleus, ER and Golgi complex, endomembrane system, mitochondria and	2 hrs	
chloroplast		
Active Learning: Endosymbiotic theory.	(1 hr)	
Unit 3: Plasma membrane and transport	4 hours	
Structure of the plasma membrane and associated proteins, membrane permeability	2 hrs	
Active and passive transport, facilitated diffusion and transport proteins, tonicity and		
osmoregulation	2 hrs	
Unit 4: Cellular energetics	4 hours	
Introduction to metabolism (anabolism and catabolism), ATP and reaction coupling, C3	2 hrs	
and C4 cycles, overview of cellular respiration		
Oxidative phosphorylation and the electron transport chain, fermentation and	1 hr	
anaerobic respiration		
Active Learning: Evolution of photosynthesis	(1 hr)	
	I	
Unit 5: Cell communication	5 hours	
Introduction to cell signaling and general principles	2 hrs	
Ligands and receptors, GPCR signaling (yeast mating type signaling), feedback and	2 hrs	
homeostasis		
Endocrine pathways and long- distance communication, HPA axis.	1 hr	
Unit 6: Cell cycle and regulation	5 hours	
Cell cycle overview, interphase and mitotic phases	1 hr	
Cell cycle checkpoints and tumor suppressors	1 hr	
Introduction to meiosis, synapsis and crossing-over	2 hr	
Active Learning: Cell cycle dysregulation in cancer	(1 hr)	
Unit 7: Cell cytoskeleton and tissue formation	4 hours	
Filaments and tubules	1 hr	
Organization of cytoskeletal elements	1 hr	
Cell movement Plant cell wall	1 hr	
Active Learning: Role of the extracellular matrix in tissue formation.	(1 hr)	
Unit 8: Cell death	3 hours	
Definition of life and death, accidental and programmed cell death	1 hr	
Apoptosis: brief introduction and physiological importance	1 hr	
Cell viability and tests for cell death.	1 hr	
Analytical Techniques	15 hours	
Unit 9: Basic principles	2 hours	
Units of measurement, electrolytes and pH, quantitative biological measurements.	2 hrs	
Unit 10: Cell disruption and centrifugation	3 hours	
Methods of cell lysis: physical and chemical,	1 hr	
Basic principle of sedimentation, types of centrifugation, preparative versus analytical		
centrifugation.	2 hrs	
Unit 11: Microscopy	3 hours	
Light microscopy, magnification, numerical aperture, resolution	1 hr	
Fluorescent proteins and live cell imaging, fluorescence microscopy	1 hr	
Electron Microscopy	1 hr	

Unit 12: Chromatography	3 hours	
Principles of chromatography and performance parameters, adsorption and partition		
chromatography, size-exclusion chromatography, affinity chromatography		
Active Learning: High-performance liquid chromatography.		
Unit 13: Electrophoresis	2 hours	
Discussion on matrices, agarose electrophoresis, SDS and native PAGE		
Unit 14: Basics of spectroscopy	2 hours	
Ultraviolet and visible light spectroscopy	1 hr	
Active Learning: Fluorescence spectroscopy.		

Practical: BTP224: Techniques in Cell Biology

- 1) Calculation of cell number using a hemocytometer
- 2) Effect of cell size on diffusion using agarose gel.
- 3) Sedimentation: isolation of chloroplasts
- 4) Staining of mitochondria (Janus Green) in cheek cells.
- 5) Mitosis: Onion root tip
- 6) Meiosis: Anthers
- 7) Osmosis: RBC/yeast
- 8) Chromatography: TLC of amino acids
- 9) Micrometry
- 10) Electrophoresis: agarose gel electrophoresis of dyes

Reference text

Molecular Cell Biology, Eighth Edition, 2016, Harvey Lodish; Arnold Berk; Chris A. Kaiser; Monty Krieger; Anthony Bretscher; Hidde Ploegh; Angelika Amon; Kelsey C. Martin

Principles and techniques of Biochemistry and Molecular Biology, Seventh Edition, 2010 Keith Wilson and John Walker.