

Curricular Structure for the Undergraduate Programme

in

ENVIRONMENTAL SCIENCE

(Three major subjects up to IV Semester and specialisation in one subject in V and VI semesters)

As per (1)b. of STATE EDUCATION POLICY – 2024

(SEP-2024)

(As per Case 2: Deep Specialisation in 5th & 6th Semester)

DEPARTMENT OF ENVIRONMENTAL SCIENCE ST JOSEPH'S UNIVERSITY # 36, LALBAGH ROAD, BENGALURU – 560 027

DEPARTMENT OF ENVIRONMENTAL SCIENCE ST JOSEPH'S UNIVERSITY BENGALURU – 560 027

Curricular Structure for the Undergraduate Programme in ENVIRONMENTAL SCIENCE (Three major

subjects up to IV Semester and specialisation in One subject in V and VI semesters) as per (1)b. of

STATE EDUCATION POLICY – 2024 (SEP-2024) (As per Case 2: Deep Specialisation in 5th & 6th Semester)

	No. of Theory	No. of teaching	No. of practical	Total credits	No. of	Teaching workload (hours)	
Semester	papers (3 credits)	hours / week / batch	papers (2 credits)	(Theory + Practical)	batches expected	Theory	Practicals (2 teachers each)
I	1	3	1	3 + 2 = 05	2	3	12
II	1	3	1	3 + 2 = 05	2	3	12
III	1	3	1	3 + 2 = 05	2	3	12
IV	1	3	1	3 + 2 = 05	2	3	12
V	3	9	3	(3 + 2 = 5) X 3 papers =15	1	6	06
VI	3	9	3	(3 + 2 = 5) X 3 papers =15	1	6	06
Total	10	30	10	50	10	30	60

Undergraduate teaching workload of the Department of Environmental Science = 30 (theory) + 60 (Practical) = 90 hours (Total)

DEPARTMENT OF ENVIRONMENTAL SCIENCE ST JOSEPH'S UNIVERSITY BENGALURU – 560 027

Curricular Structure for the Undergraduate Programme in

ENVIRONMENTAL SCIENCE

(Three major subjects up to IV Semester and specialisation in One subject in V and VI semesters)

as per (1)b. of STATE EDUCATION POLICY – 2024 (SEP-2024) (As per Case 2: Deep Specialisation in 5th & 6th Semester)

Sem- ester	Paper code	Tentative Paper Title
	ES 124	Components of the Environment
	ES 1P1	Water quality analysis
	ES 224	Ecosystem Dynamics, Biodiversity and Wildlife
I	ES 2P1	Ecological analysis and Biodiversity Assessment
	ES 324	Natural Resource Management and Environmental Pollution
	ES 3P1	Natural Resource Management and Environmental Pollution
IV	ES 424	Climate Sciences and Disaster Management
IV	ES 4P1	Meteorology and Climate Change Assessment
	ES 5124	Air Pollution, Noise and Radiation Pollution Management
	ES 5P1	Air Quality and Noise Monitoring
v	ES 5224	Water Pollution and Land Pollution Management
v	ES 5P2	Wastewater and Soil/Refuse analysis
	ES 5324	Waste Management and Environmental Health and Safety
	ES 5P3	Dissertation
	ES 6124	Environmental Biotechnology and Environmental Forensics
	ES 6P1	Environmental Biotechnology and Environmental Forensics
VI	ES 6224	Environmental Impact Assessment, Environmental Audit and Geospatial Applications
	ES 6P2	Environmental Impact Assessment, Environmental Audit and Geospatial Applications
	ES 6324	Environmental Economics, Sustainability and Entrepreneurship
	ES 6P3	Dissertation

B.Sc. Semester – I

ES 124: COMPONENTS OF THE ENVIRONMENT

Number of Lecture hours per semester		Number of credits
	45	3
	Course Specific Obje	ctives
CSO 1	To develop competency in understanding divisions of the Environment.	g the interrelatedness of the
CSO 2	CSO 2 To instill an introductory knowledge of the divisions of Environment and develop necessary analytical skills to characterise their variations.	
CSO 3	CSO 3 To motivate and inspire to acquire contemporary understanding and skill leading to issue identification.	
CSO 4 To inculcate creativity and innovative spirit in the domain of human- environment interface.		rit in the domain of human-

	Course Outcomes		
CO 1	Demonstrate an entry-level competence in understanding the environmental divisions and associated processes.		
CO 2	Demonstrate the ability to carry out water quality analysis in the laboratory and interpret the results.		
CO 3	Ability to understand and appreciate the role of environmental parameters in specific day-to-day activities.		
CO 4	Be able to understand the demands and function in work environment dealing with environmental systems		

ES 124 – COMPONENTS OF THE ENVIRONMENT	45 Hours
Unit – 1	8
Environmental Education: Definition, Aim, Objectives and Scope.	
Environmental Science: Definition, Aim of Study and Scope.	
Differences between Ecology and Environmental Science; Various	
approaches to study Environmental Science.	
Solar system: Formation and evolution.	
Evolution of Earth: Theories of origin.	
Earth: Position in the solar system, distance from the Sun, rotation,	
revolution, tilt, axis and their influences.	

Geological time scale: Geochronologic units - Eon, Era, Period,	
Epoch, Sub-epoch and Age.	
Period and Etymology of eras – Cenozoic, Mesozoic, Paleozoic,	
Neoproterozoic, Mesoproterozoic, Paleoproterozoic, Neoarchean,	
Mesoarchean, Paleoarchean and Eoarchean.	
Anthropocene: Definition and significance.	
Earth as a system - Spheres of Earth - Atmosphere, Hydrosphere,	
Lithosphere and Biosphere - their complex interactions and	
significance.	
Unit – 2	10
Atmosphere: Definition, Evolution of the atmosphere – Principal	
components – permanent and variable gases. Chemical composition -	
Homosphere and Heterosphere. Thermal structure of the atmosphere.	
Insolation: Definition, Factors affecting the distribution. Solar (short-	
wave) and terrestrial (long-wave) radiations. Thermodynamics and	
Atmospheric circulation.	
Earth's Albedo and Heat Budget of the Earth.	
Weather: Definition, parameters - Temperature, Pressure, Humidity,	
Precipitation, Wind Speed & Direction. Differences between weather and	
climate.	
Greenhouse effect: Factors and significance.	
Ozone chemistry: Significance of stratospheric ozone layer, causes,	
mechanism and effects of ozone layer depletion. Control measures -	
Vienna Convention and Montreal Protocol. Recovery of stratospheric	
ozone. Ozone layer monitoring.	
Unit – 3	12
Hydrosphere: Hydrologic cycle - process of heat energy transfer -	
Radiation, Conduction and Convection. Types of lifting and	
precipitation - Bergeron process – The Collision and Coalescence	
process. Cloud formation and classification. Forms of condensation;	
Forms of precipitation; Cloud burst and flash floods. Artificial rainfall -	
Cloud seeding.	
Limnology: Definition – Lotic and Lentic environment. Differences	

between Lotic and Lentic systems.	
Lotic environment: Springs, Stream profile: Potomon and Rhithron.	
Lentic environment: Ponds, Lakes and Estuaries – their types. Photic	
and thermal stratification of Lentic systems.	
Marine environment: Zonation, Salinity status of marine environment,	
biotic communities of oceanic zones, acidification of sea water; Coral	
bleaching; ocean currents and tides, coastal upwelling and Red tide	
– significance.	
Groundwater: Definition. Zonation; Types of wells. Salinization of	
groundwater in coastal regions.	
Unit – 4	15
Lithosphere: Definition. Internal structure of the Earth.	
Endogenic processes: Plate Tectonics – Earthquake and Volcanism	
 Causes, Effects, and Management. 	
Exogenic processes: River, Sand dunes, Glaciation, Avalanches and	
Landslides.	
Mineralogy: Definition. Outline classification of minerals.	
Petrology: Definition. Classification - Igneous, Sedimentary and	
Metamorphic rocks – their formation – types – uses.	
Pedology: Soil – definition – formation – soil profile. Soil types –	
Alluvial; Black; Red and Laterite; Arid and Desert; Saline and	
Alkaline; Peaty and Marshy; Grassland, Forest and Mountain Soils.	
Soil biota: Definition, characteristics, flora & fauna and their	
significance.	
Weathering: Definitions, factors and types.	
Soil erosion: Definitions, types, effects and management.	
	1

References

Allaby, M. (2002). Basics of Environmental Science. Routledge.

- Barry, G. R. and Chorley, J. R. (2003). Atmosphere, Weather and Climate. Routledge, London.
- Critchfield, H. J. (1995). General Climatology. Printice Hall of India.
- Horne, A. J., & Goldman, C. R. (1994). Limnology (Vol. 2). New York: McGraw-Hill. Lutgens, F. K. and Tarbuck, E. J. (1982).
- Atmosphere Introduction to Meteorology. Prentice Hall Inc.
- Manahan, S. E. (2011). Fundamentals of environmental chemistry. CRC press.
- Miller, G. T., & Spoolman, S. (2015). Environmental Science. Cengage Learning.
- Miller, Jr. G. T. (1994). Living in the Environment: Principles, Connections and Solutions. Wadsworth Publishing Co.
- Miller, R. W. and Donahue, R. L. (1992). Soils Introduction to Soils and Plant Growth. Prentice Hall of India.
- Mitra, A., & Chaudhuri, T. R. (2020). Basics of Environmental Science. New Central Book Agency.
- Nandini, N. (2019). A text book on Environmental Studies (AECC). Sapna Book House, Bengaluru.
- Wright, R. T. (2007). Environmental science: toward a sustainable future. Jones & Bartlett Publishers.

ES 1P24: WATER QUALITY ANALYSIS

Nu	mber of practical hours per semester	Number of credits
	45	2
4	Compling to shaiguos of water	
1.		
2.	2a. Determination of Colour - Visual/Col	
	2b. Determination of Temperature - The	rmometer method
3.	Determination of Turbidity - Nephelome	tric method
4.	Determination of pH – Electrochemical r	method
5.	Determination of Electrical Conductance	e - Conductivity meter method
6.	6a. Estimation of Total Solids - Evapora	tion and Gravimetric method
	6b. Estimation of Total Settleable Solids	- Volumetric method
7.	7a. Estimation of Total Dissolved Solids	- Filtration and Gravimetric method
	7b. Estimation of Total Suspended Solid	ds - Filtration and Gravimetric metho
8.	Determination of Alkalinity - Acidimetric	
9.	Determination of Total Hardness - EDTA	A complexometric method
10	. Estimation of Dissolved Oxygen – Modif	fied Winkler's method
11	. Estimation of Dissolved Carbon dioxide	- Titrimetric method
12	2. Determination of Chlorides - Argentome	tric method
Reference	es	
	I. (2009). Handbook on water quality mon ouse, Bengaluru.	itoring and Assessment. Sapna
	. N. and Mc Carty, P. L. (1978). Chemistry w – Hill International.	for Environmental Engineering.
	M. (1990). Environmental Analysis: Wa er, Agro Botanical Pub.	ater, Soil and Air. Edition, 2.

Standard Methods for Examination of Water and Wastewater. (2023). APHA – WEF.

Trivedi, P. K. and Goel, P. K. (1984). Chemical and Biological Methods of Water Pollution Studies. Environmental Publication.

Zhang, C. (2007). Fundamentals of environmental sampling and analysis. John Wiley & Sons.

B.Sc. Semester – II

ES 224: ECOSYSTEM DYNAMICS, BIODIVERSITY AND WILDLIFE

Number of Lecture hours per semester	Number of credits
45	3

Course Specific Objectives		
CSO 1	To develop competency in understanding the ecological principles	
0301	governing the biosphere, biodiversity and wildlife.	
0000	To develop necessary analytical skills to assess and understand the	
CSO 2	ecological systems, local biodiversity and regional wildlife.	
0000	To motivate and inspire to acquire contemporary understanding and skills	
CSO 3	leading to issue identification and conservation.	
CSO 4	To inculcate creativity and innovative spirit in identifying appropriate	
	conservation tools and their timely implementation.	

Course Outcomes		
CO 1	Demonstrate an entry-level competence in understanding the ecological dynamics and the influence of biodiversity/wildlife on social and legal dimensions.	
CO 2	Demonstrate the ability to carry-out data collection procedures and analysis in field conditions/laboratories leading to appropriate interpretations.	
CO 3	Ability to understand and appreciate the role of ecosystem dynamics in conservation of specific habitats/ agroecosystems.	
CO 4	Be able to develop competence and academic skills in contributing towards biodiversity and wildlife conservation.	

ES 224 – ECOSYSTEM DYNAMICS, BIODIVERSITY AND WILDLIFE	45 Hours
Unit – 1	13
Ecology: Levels of organization, Ecology: Divisions of Ecology -	
approaches in studying Ecology.	
Ecosystems: Definitions. Classification of ecosystem – Terrestrial	
and Aquatic with their divisions. Structure of the ecosystem - Function	
of ecosystem - food chain – food web – bio-magnification. Ecological	
pyramids – Types.	
Ecological Niche: Concept and Types of niches: Spatial, Trophic and	
Multidimensional – Niche parameters: Form, Position and Width –	

Niche Partitioning - Realized and Fundamental Niche.	
Biotic and Abiotic factors: Influence of Temperature, Wind and	
Water, Edaphic, Topographic on flora and fauna.	
Concept of Limiting Factors: Liebig's Law of Minimum; Shelford's	
Law of Tolerance and the combined concept.	
Biogeochemical cycles: Classification. Carbon and Phosphorus	
cycles – anthropogenic influences on these cycles.	
Energy flow in an ecosystem: Productivity - trophic levels; Study of	
pond and crop land ecosystems; homeostasis and feedback	
mechanisms.	
Unit – 2	12
Population Ecology: Definition, Characteristics of Population:	
Density – Natality – Mortality – Age distribution – Growth form –	
Population Equilibrium – Biotic potential – Carrying capacity –	
Dispersal – Dispersion – Population fluctuations – Population	
regulation.	
Community Ecology: Definition, Characteristics of a Community –	
Species diversity, growth form and structure, dominance, relative	
abundance, trophic structure.	
Ecological succession: Primary and Secondary succession –	
Natural and man-influenced succession, - Hydrarch and Xerarch -	
Climax vegetation and their theories; Ecotone and Edge effect;	
Ecological equivalents; Ecotypes and Ecophenes; Ecological	
indicators.	
Biomes: Definition and concept. Classification of biomes.	
Evolution: Definition – Darwin's postulates - Natural selection –	
Types – Industrial Melanism – Pesticide resistance.	
Co-evolution; Mimicry – Batesian and Mullerian mimicry, warning	
colouration.	
Unit – 3	10
Biodiversity: Definition: Levels of Biodiversity - genetic diversity,	
species diversity and ecosystem diversity. Values of Biodiversity:	
Consumptive use value, productive use value; Non-consumptive values	

- social value, ethical value, aesthetic value, option values and	
ecosystem service value.	
Biodiversity Hotspots: Global and Indian centres. Biogeography of	
India. Concept of Eco-Sensitive Areas (ESA).	
Biodiversity profile of India: Forests and Grasslands; Wetlands and	
Riverine ecosystems; Marine and coastal diversity; Agrobiodiversity;	
Urban Biodiversity; Invasive Alien species.	
Wildlife: Definition. Wildlife of India. Values of wildlife. Importance of	
wildlife: Ecological, economic, socio-cultural, investigatory, medicinal,	
conservation of biological diversities, importance in agriculture.	
Endangered species: Definition, characteristics and reasons for	
endangering. Endangered species of India.	
Endemic species – Concept, types, characteristics, theories of	
endemism. Endemic Wildlife Species of India.	
Wildlife (Protection) Act, 1972, Concept of Eco-Sensitive Zones (ESZ).	
Threats to biodiversity and wildlife: Over exploitation, Habitat	
destruction, fragmentation, urbanisation, agriculture extension, Illegal	
trapping and poaching, diseases, deforestation, invasive species,	
pollution, acidification of soil and water, desertification, tourism and	
climate change.	
Unit – 4	10
Conservation (Biodiversity and Wildlife): Definition, need and	
significance. Conservation goals - Habitat conservation, Prevention	
of deforestation, Preventing species from extinction, Sustainable	
harvest of biological resources and climate change mitigation.	
Terminologies of conservation significance: Keystone species,	
Foundation species, Umbrella Species and Flagship species, Edge	
species, Critical link species, Indicator species, Priority species and	
Rare species.	
IUCN Red Listed species: Data Deficient, Least Concern, Near	
Threatened, Vulnerable, Endangered, Critically Endangered, Extinct	
in the Wild and Extinct.	
In-situ conservation: Protected areas – Sanctuaries - National Parks	

- Biosphere Reserves - Sacred groves. Case studies Project Tiger and Project Elephant, Project Crocodile; Vulture (Ramadevarabetta Vulture Sanctuary), Black Buck, Snow Leopard, Amur falcon, Sarus Crane, Great Indian Bustard, King Cobra and Mahseer Fish; Translocation of Cheetah in Kuno National Park, M.P. (One Case study to be taught in the class; Others are to be given as assignments). **Ex-situ conservation:** Captive breeding (Botanical gardens, zoological parks, seed banks). Case study of Ailuropoda melanoleuca (Giant panda), Ramosmania heterophylla and Madhuca insignis. Cryopreservation, pollen storage, tissue culture, genetic engineering, field gene banks. Case study of Indian rhinoceros and black rhinoceros. (One Case study to be taught in the class; Others are to be given as assignments). Traditional Knowledge and ethics in conservation of biodiversity. A locally relevant case study on biodiversity related aspects. People's Biodiversity Register. Bio-piracy. **Communication on Wildlife:** Journalism and Wildlife Photography. Overview of International and National conservation efforts -Convention on Biological Diversity and Agenda 21. Ramsar Convention, Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), Convention on the Conservation of Migratory Species of Wild Animals (CMS), Trade Records Analysis of Flora and Fauna in Commerce (TRAFFIC). Reducing Emissions from Deforestation and Forest Degradation (REDD) and REDD+. National Biodiversity Action Plan (NBAP).

References

Agarwal, K. C. (1999). Environmental Biology. Agro Botanica.

Beck, W. S., Liem, K. F. and Simpson, G. G. (1991). Life – Introduction to Biology.

Harper Collins Publications.

- Chapman, J. L. and Reiss, M. J. (1995). Ecology Principles and Applications.
- Cambridge University Press.
- Dash, M. C. (2001). Fundamentals of Ecology. Tata McGraw-Hill Publishing Co. Kormondy, E. J. (1996). Concepts of Ecology. Prentice Hall of India.
- Mamta Rawat, Sumit Dookia and Chandrakasan Sivaperuman. (2015). Aquatic Ecosystem: Biodiversity, Ecology and Conservation. Springer publication.

McCleery, Robert A., Moorman, Christopher, Peterson, M. Nils (Eds.). (2014).

Urban Wildlife Conservation - Theory and Practice. Springer publication.

Odum, E. P. (1971). Fundamentals of Ecology. W.B. Saunders Co.

Raven, P. H. and Johnson, G. B. (1995). Biology. Wm. C. Brown Publications.

Ricklefs, R. E. and Miller, (1999). Ecology. W.H. Freeman and Co.

Smith, T. M. and Smith, R. L. (2007). Elements of Ecology. Pearson Education.

Taylor, T. J., Green, N. P. O. and Stout, G.W. (1998). Biological Science

Soper, R.(ed.). Cambridge University Press.

Wallace, R. A. (1990). Biology – The World of Life. Harper Collins Publications.

ES 2P24: ECOLOGICAL ANALYSIS AND BIODIVERSITY ASSESSMENT

Number of practical hours/semester	Number of credits
45	2

- 1. Sampling technique of plankton
- 2. Quantitative estimation of phytoplankton Sedgwick-Rafter method
- 3. Quantitative estimation of zooplankton Sedgwick-Rafter method
- 4. Determination of organic pollution Palmer's Algal Pollution index
- 5. Estimation of primary productivity of a pond Light and Dark bottle method
- Estimation of primary productivity of terrestrial vegetation Chlorophyll method
- 7. Identification of ecological indicators and Identification of endangered flora and fauna of India
- Documentation and assessment of vegetation diversity Census method/quadrat method
- 9. Documentation and assessment of faunal diversity Line transect method
- 10. Documentation and assessment of winged insect fauna (Entomology) Light trap/Sticky trap method / Visual encounter /Photographic survey
- 11. Documentation and assessment of soil fauna Pitfall trap method
- Determination of species diversity indices Simpson's Index and Shannon-Weiner Index

References

Michael, P. (1986). Ecological Methods for Field and Laboratory Investigations.

Tata Mc Graw-Hill Publishing Co. Ltd.

Rolan, R. G. (1973). Laboratory and Field Investigations in General Ecology. Macmillan Co.

Standard Method for Examination of Water and Wastewater. (2017). APHA – WEF.

Subrahmanyam, N. S. and Sambamurty, A. V. S. S. (2000). Ecology. Narosa Publishing House.

Trivedi, P. K. and Goel, P. K. (1984). Chemical and Biological Methods of Water Pollution Studies. Environmental Publications.