ST JOSEPH'S UNIVERSITY BENGALURU

A Public –Private-Partnership University under RUSA 2.0 of MHRD(Government of India), established by the Karnataka Govt. Act No. 24 of 2021

ST. JOSEPH'S INSTITUTE OF INFORMATION TECHNOLOGY

DEPARTMENT OF ADVANCED COMPUTING

SYLLABUS FOR PG DIPLOMA IN DATA ANALYTICS

SUMMARY OF CREDITS IN PG DIPLOMA IN DATA ANALYTICS

DEPARTMENT OF ADVANCED COMPUTING								
(2022-2024)								
Semester 1	Code Number	Title	No. of Hours of Instruct ions	Nu mb er of Ho urs of teach ing per week	Nu mbe r of cred its	Conti nuous Intern al Assess ment (CIA) Marks	End Seme ster Mar ks	Tot al ma rks
Theory	PGDDS1 122	Data Analytics and Visualiza tion	3	3	3	50	50 marks 2 Hrs	100
Theory	PGDDS1 222	Database Manage ment Systems	3	3	3	50	50 marks 2 Hrs	100
Theory	PGDDS1 322	Python for Data Analytics	3	3	3	50	50 marks 2 Hrs	100
Theory	PGDDS1 422	Basics of Statistics	3	3	3	50	50 marks 2 Hrs	100
Practical	PGDDS1 P1	Data Analytics and Visualiza tion Lab	2	2	1			50
Practical	PGDDS1 P2	Python for Data Analytics Lab	2	2	1			50
Practical	PGDDS1 P3	Database Manage ment Systems Lab	2	2	1			50
Practical	PGDDS1 P4	Mini Project	4	4	2			50

Total Nu	Total Number of credits:			17				
Semest er 2	Code Numb er	Title	No. of Hours of Instruct ions	Nu mb er of teach ing hrs /wee k	Nu mbe r of cred its	Conti nuous Intern al Assess ment (CIA) Marks	End Seme ster Mar ks	Tot al ma rks
Theory	PGDD S2122	Machine Learning	3	3	3	50	50 marks 2 Hrs	100
Theory	PGDD S2222	Linear Algebra	3	3	3	50	50 marks 2 Hrs	100
Practica 1	PGDD S2P1	Internship/Project		24	12			100
Total Nu	Total Number of credits:				18			

COURSE OUTCOMES AND COURSE CONTENT

Semester	First
Paper Code	PGDDS 1122
Paper Title	DATA ANALYTICS AND VISUALIZATION
Number of teaching hrs per week	3 Hrs
Total number of teaching hrs per semester	45
Number of credits	3

COURSE OBJECTIVES

This program will make the students learn the process of working with data in large scale. Make the student understand the existence of data with its wilderness and make use of it.

COURSE OUTCOMES

CO1: Understand the fundamental concepts of data.

CO2: Understand the fundamental concepts of data science process.

CO3: Understand the fundamental concepts of Machine Learning

CO4: Fundamental concepts of large data **CO5**: Concepts of Data Visualization

UNIT 1: PREPARING AND GATHERING DATA AND KNOWLEDGE

8 Hrs.

Philosophies of data science - Data science in a big data world - Benefits and uses of data science and big data - facts of data: Structured data, Unstructured data, Natural Language, Machine generated data, Audio, Image and video streaming data - The Big data Eco system: Distributed file system, Distributed Programming framework, Data Integration frame work, Machine learning Framework, NoSQL Databases, Scheduling tools, Benchmarking Tools, System Deployment, Service programming and Security.

UNIT 2: THE DATA SCIENCE PROCESS

8 Hrs.

Overview of the data science process- Retrieving data –Data Preparation: Cleansing, integrating, and transforming data - Exploratory data analysis – Data Modeling: Model and variable selection, Model execution, Model diagnostic and model comparison - Presentation and automation: Presenting data, Automating data analysis

UNIT 3: INTRODUCTION TO MACHINE LEARNING

8 Hrs.

Application for machine learning in data science- Tools used in machine learning- Modeling Process – Training model – Validating model – Predicting new observations –Types of machine learning Algorithm : Supervised learning algorithms, Unsupervised learning algorithms, Reinforcement Algorithm.- Semi supervised Learning

UNIT 4: BIG DATA, GRAPH DATABASES, TEXT ANALYTICS

8 Hrs.

Distributing data storage and processing with frameworks - Case study: Assessing risk when loaning money - Join the NoSQL movement - Introduction to NoSQL - Case Study

Introducing connected data and graph databases - Text mining and text analytics - text mining in real world - text mining techniques - - Map Reduce - Dashboard development tools.

UNIT 5: DATA VISUALIZATION

8 Hrs.

SELF STUDY 5 Hrs.

TEXT BOOKS

- 1. Introducing Data Science, Davy Cielen, Arno D. B. Meysman and Mohamed Ali, Manning Publications, 2016.
- 2. Think Like a Data Scientist, Brian Godsey, Manning Publications, 2017.

REFERENCE BOOKS

- 1. Doing Data Science, Straight Talk from the Frontline, Cathy O'Neil, Rachel Schutt, O' Reilly, 1st edition, 2013.
- 2. Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Cambridge University Press, 2nd edition, 2014
- 3. An Introduction to Statistical Learning: with Applications in R, Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Springer, 1st edition, 2013

BLUE PRINT

Code number: PGDDS1122

Title of the paper: DATA ANALYTICS AND VISUALIZATION

Chapter	Number of Hours	Total marks for which the questions are to be asked (including bonus questions	
Unit I	8	20	
Unit II	8	20	
Unit III	8	30	
Unit IV	8	20	
Unit V	8	20	
Self-Study	05		
TOTAL	45	110	
N	Maximum marks for the paper (Excluding bonus question)= 70		

Semester	First
Paper Code	PGDDS 1222
Paper Title	DATABASE MANAGEMENT SYSTEM
Number of teaching hrs per week	3 Hrs
Total number of teaching hrs per semester	45
Number of credits	3

COURSE OBJECTIVES

This course concentrates on introduction, principles, design and implementation of DBMS. It introduces about the distributed system and brief about data mining data warehouse. To and concepts strong foundation of database develop design and skills the and implementation of a database application with a brief exposure to advanced database concepts.

COURSE OUTCOMES

CO1: Understanding the fundamental concepts of Database Management systems

CO2: Understanding the concepts of Database models.

CO3: Understanding the core terms, concepts, and tools of relational database management systems.

CO4: Understanding database design and logic development for database programming.

UNIT 1: DATABASE MANAGEMENT SYSTEM INTRODUCTION

10 Hrs.

Data- Database Database management system- Characteristics of the database approach- Role of Database administrators- Role of Database Designers- End Users- Advantages of Using a DBMS-Data models, Schema and Instances –Database design - Database Engine – 1 tier architecture – 2 tier architecture – 3 tier architecture – History of Database Management systems- Types of Databases.

UNIT 2: DATABASE MODELS AND IMPLEMENTATION

10 Hrs.

Data Model and Types of Data Model- Relational Data Model- Hierarchical Model- Network Data Model-Object/Relational Model- Object-Oriented Model- Entity-Relationship Model- Modeling using E-R Diagrams- Notation used in E-R Model- Relationships and Relationship Types- Cardinalities. Subclasses, Super classes and Inheritance — Specialization and Generalization — Characteristics of Specialization and Generalization — Modeling of UNION types with categories- An example University EER Schema.

UNIT 3: RELATIONAL DATABASES

10 Hrs.

Structure of relational databases - Properties of relational databases and Tables - Structure of relational databases - Database Schema - Armstrong Axioms - Functional Dependency-Anomalies in a Database- Properties of Normalized Relations- First Normalization- Second Normal Form Relation- Third Normal Form- Boyce-Codd Normal Form (BNCF).

UNIT 4: SQL AND ADDITIONAL CONCEPTS

10 Hrs.

Categories of SQL Commands; Data Definition; Data Manipulation Statements, SELECT - The Basic Form, Subqueries, Functions, GROUP BY Feature, Updating the Database, Data Definition Facilities. MongoDB Overview- MongoDB Data modeling.

SELF STUDY 5 Hrs.

REFERENCE BOOKS

- 1. Elmasri Ramez and Navathe Shamkant B, Fundamentals of Database Systems, Addison-Wesley, 6th Edition, 2010.
- 2. Silberschatz, Korth, Sudarshan, Database System Concepts, 5 Edition, McGraw Hill, 2006.
- 3. O'neil Patricand, O'neil Elizabeth, Database Principles, Programming and Performance, 2nd Edition, Margon Kaufmann Publishers Inc, 2008.

BLUE PRINT

Code number: PGDDS1222

Title of the paper: DATABASE MANAGEMENT SYSTEM

Chapter	Number of Hours	Total marks for which the questions are to be asked (including bonus questions
Unit I	10	20
Unit II	10	30
Unit III	10	30
Unit IV	10	30
Self-Study	05	

TOTAL	45	110
Maximum marks for the paper (Excluding bonus question)= 70		

Semester	FIRST
Paper Code	PGDDS1322
Paper Title	PYTHON FOR DATA ANALYTICS
Number of teaching hrs per week	3 Hrs
Total number of teaching hrs per semester	45
Number of credits	3

This course is designed to teach students how to analyse different types of data using Python. Students will learn how to prepare data for analysis, perform simple statistical analysis, create meaningful data visualizations and predict future trends from data.

COURSE OUTCOMES:

On successful completion of the course, students will be able to:

- **CO1:** Understanding basics of python for performing data analysis
- CO2: Use different python packages for mathematical, scientific applications and for web data analysis.
- CO3: Able to get knowledge about Data Wrangling.
- **CO4**: Develop the model for data analysis and evaluate the model performance.
- CO5: Understanding the data, performing pre-processing, processing and data visualization to get insights from data.

UNIT 1: DATA STRUCTURES AND OOP

8 Hrs.

Python Program Execution Procedure – Statements – Expressions – Flow of Controls – Functions – Numeric Data Types – Sequences – Strings – Tuples – Lists – Dictionaries.

Class - Constructors - Object Creation - Inheritance - Overloading. Text Files and Binary Files - Reading and Writing.

UNIT 2: NUMPY AND PANDAS PACKAGES

8 Hrs.

NumPy ndarray - Vectorization Operation - Array Indexing and Slicing - Transposing Array and Swapping Axes - Saving and Loading Array - Universal Functions - Mathematical and Statistical Functions in NumPy.

Series and DataFrame data structures in pandas - Creation of Data Frames - Accessing the

columns in a DataFrame - Accessing the rows in a DataFrame - Panda's Index Objects - Reindexing Series and DataFrames - Dropping entries from Series and Data Frames - Indexing, Selection and Filtering in Series and Data Frames - Arithmetic Operations between Data Frames and Series - Function Application and Mapping.

UNIT 3: DATA WRANGLING

8 Hrs.

UNIT 4: DATA AGGREGATION AND GROUP OPERATIONS

8 Hrs

Group By Mechanics – Data Aggregation – GroupWise Operations – Transformations – Pivot Tables – Cross Tabulations – Date and Time data types.

UNIT 5: VISUALIZATION IN PYTHON

8 Hrs.

Matplotlib and Seaborn Packages – Plotting Graph - Controlling Graphs – Adding Text – More Graph Types – Getting and Setting Values – Patches.

SELF STUDY

5 Hrs.

REFERENCE BOOKS:

- 1. Gowrishanker and Veena, "Introduction to Python Programming", CRC Press, 2019.
- 2. Python Crash Course, 2nd Edition, By Eric Matthes, May 2019
- 3. NumPy Essentials, By Leo Chin and Tanmay Dutta, April 2016
- 4. Joel Grus, "Data Science from scratch", O'Reilly, 2015.
- 5. Wes Mc Kinney, "Python for Data Analysis", O'Reilly Media, 2012.
- 6. Kenneth A. Lambert, (2011), "The Fundamentals of Python: First Programs", Cengage Learning
- 7. Jake Vanderplas. Python Data Science Handbook: Essential Tools for Working with Data 1st Edition.

BLUE PRINT

Code number: PGDDS1322

Title of the paper: PYTHON PROGRAMMING

Chapter	Number of Hours	Total marks for which the questions are to be asked (including bonus questions	
Unit I	8	20	
Unit II	8	30	
Unit III	8	20	
Unit IV	8	20	
Unit V	8	20	
Self-Study	05		
TOTAL	45	110	
N	Maximum marks for the paper (Excluding bonus question)= 70		

Semester	FIRST
Paper Code	PGDDS1422
Paper Title	BASICS OF STATISTICS
Number of teaching hrs per week	3 Hrs
Total number of teaching hrs per semester	45
Number of credits	3

The course aims to explain the basic concepts of statistical methods and develop analytical ability to solve real-world problems using these methodologies.

COURSE OUTCOMES:

CO1: Understand the concept of data collection and analysis.

CO2: Design effective data visualizations in order to provide new insights and communicate information to the viewer.

CO3: Knowledge of Statistical techniques and its scope and importance

CO4: Discuss basic ideas of linear regression and correlation and their applications.

UNIT 1: DATA COLLECTION

10 Hrs.

Concepts of measurement, scales of measurement, design of data collection formats with illustration, data quality and issues with date collection systems with examples from business, cleaning and treatment of missing data, Sampling techniques.

UNIT 2: DATA VISUALIZATION

10 Hrs.

Principles of data visualization and different methods of presenting data in business analytics

UNIT 3: BASIC STATISTICS

10 Hrs.

Frequency table, histogram, measures of location, measures of spread, skewness, curtosis, percentiles, box plot, relative frequency distribution as a statistics model

UNIT 4: CORRELATION AND REGRESSION

10 Hrs.

Covariance, Correlation coefficient, properties of Correlation coefficient, Rank correlation, linear regression (two variables), Multiple correlation and partial correlation.

SELF STUDY 5 Hrs.

REFERENCE BOOKS:

- 1. Statistical Inference : P. J. Bickel and K. A. Docksum, 2nd Edition, Prentice Hall.
- 2. Introduction to Linear Regression Analysis: Douglas C. Montgomery

BLUEPRINT

Code number: PGDDS1422

Title of the paper: BASIC STATISTICAL METHODS

Chapter	Number of Hours	Total marks for which the questions are to be asked (including bonus questions	
Unit I	10	30	
Unit II	10	30	
Unit III	10	20	
Unit IV	10	30	
Self-Study	5		
TOTAL	45	110	
N	Maximum marks for the paper (Excluding bonus question)= 70		

Semester	FIRST
Paper Code	PGDDS2P1
Paper Title	DATA ANALYTICS AND VISUALIZATION LAB
Number of teaching hrs per week	2 Hrs
Total number of teaching hrs per semester	30
Number of credits	1

- 1. Creating and manipulating vector in R
- 2. Creating matrix and manipulating matrix in R
- 3. Operations on Data Frames in R
- 4. Operations on Lists in R.
- 5. Programs on If else statements in R
- 6. Programs on For Loops in R.
- 7. Customizing and Saving to Graphs in R.
- 8. PLOT Function in R to customize graphs
- 9. 3D PLOT in R to customize graphs

- 10. Implement in R Programming the concept to find Sum, Mean and Product of a Vector, ignore element like NA or NaN.
- 11. Implement in R Programming the concept to find missing values.
- 12. Implement the concept to create a list of data frames and access each of those data frames from the list using R.
- 13. Implement the concept of matrix multiplication and addition using R.
- 14. Implement linear regression model and compare predicted value with actual value using Visualization.
- 15. Implement logistic regression model and compare predicted value with actual value using Visualization.
- 16. Implement k-means clustering.
- 17. Data Visualization

Semester	FIRST
Paper Code	PGDDS2P2
Paper Title	PYTHON FOR DATA ANALYTICS LAB
Number of teaching hrs per week	2 Hrs
Total number of teaching hrs per semester	30
Number of credits	1

List of programs -

- 1. Introduction to Python interpreter
- 2. Control statements
- 3. functions, I/O, File handling, Packages/Libraries
- 4. Exception Handling, OO Programming.
- 5. Use of different packages for Data analytics and visualization

Semester	FIRST
Paper Code	PGDDS2P3
Paper Title	DATABASE MANAGEMENT SYSTEMS LAB
Number of teaching hrs per week	2 Hrs
Total number of teaching hrs per semester	30

Number of credits	1
-------------------	---

- 1. DDL
- 2. EER diagram
- 3. DML
- 4. Different types of JOIN operations
- 5. Manipulating database using Python

Semester	SECOND
Paper Code	PGDDS2122
Paper Title	MACHINE LEARNING
Number of teaching hrs per week	3 Hrs
Total number of teaching hrs per semester	45
Number of credits	3

This course will provide the students to understand the concepts of Machine Learning, supervised learning and their applications, the concepts and algorithms of unsupervised learning, the concepts and algorithms of advanced learning.

COURSE OUTCOMES:

CO1: Design a learning model appropriate to the application.

CO2: Design a model using supervised learning

CO3: Use a tool to implement typical Clustering algorithms for different types of applications in unsupervised learning

CO4: Identify applications suitable for different types of dimensionality reduction methods.

UNIT 1: MACHINE LEARNING INTRODUCTION

10 Hrs.

Machine Learning-Types of Machine Learning –Machine Learning process- preliminaries, testing Machine Learning algorithms, turning data into Probabilities, and Statistics for Machine Learning Probability theory – Probability Distributions – Decision Theory.

UNIT 2: SUPERVISED LEARNING

10 Hrs.

Linear Models for Regression, Linear Models for Classification, Discriminant Functions, Probabilistic Generative Models, Probabilistic Discriminative Models, Decision Tree Learning, Bayesian Learning, Naïve Bayes, Ensemble Methods – Bagging and Boosting, Mixture of experts, Support Vector Machines.

UNIT 3: UNSUPERVISED LEARNING

10 Hrs.

Clustering- K-means, EM Algorithm, Mixtures of Gaussians, Estimating means of K Gaussians

UNIT 4: DIMENSIONALITY REDUCTION

10 Hrs.

Dimensionality Reduction, Linear Discriminant Analysis, Factor Analysis, Principal Components Analysis, Independent Components Analysis, TSNE.

SELF STUDY 5 Hrs.

REFERENCE BOOKS:

- 1. Tom Mitchell, "Machine Learning", McGraw-Hill, 1997.
- 2. Christopher Bishop, "Pattern Recognition and Machine Learning" Springer, 2007.
- 3. Stephen Marsland, "Machine Learning An Algorithmic Perspective", Chapman and Hall, CRC Press, Second Edition, 2014.
- 4. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 5. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Third Edition, 2014.

BLUEPRINT

Code number: PGDDS2122

Title of the paper: Machine Learning

Chapter	Number of Hours	Total marks for which the questions are to be asked (including bonus questions
Unit I	10	20
Unit II	10	30
Unit III	10	30
Unit IV	10	30
Self-Study	5	
TOTAL	45	110
Maximum marks for the paper (Excluding bonus question)= 70		

Semester	SECOND
Paper Code	PGDDS2222

Paper Title	LINEAR ALGEBRA
Number of teaching hrs per week	3 Hrs
Total number of teaching hrs per semester	45
Number of credits	3

To help students understand the 'intuition' behind the concepts of Linear Algebra and which in turn will help them to see its applications in later courses.

COURSE OUTCOMES:

CO1: Understand the most fundamental concept 'vector' that constructs Linear Algebra.

CO2: Able to gain knowledge of two Fundamental topics of Linear Algebra and Vector Space

CO3: Understanding two Fundamentals topics of Linear Algebra and Linear Transformation

CO4: Building the Basics of Linear Programming

UNIT 1: VECTORS 10 Hrs.

Introduction to Linear Algebra, Difference Between Linear Algebra & Matrix Analysis, Revision of Basic Geometry, Definition of Vectors - Examples, Two Fundamental Vectors - Geometric Vectors and R_n Vectors, Properties of Vectors, Linear Combination of Vectors, Decomposition of Vectors, Linear Independent & Linearly Dependent Vectors and Span of Vectors.

UNIT 2: VECTOR SPACE 10 Hrs.

Definition of Vector Space – Examples, Definition of Subspaces – Examples, Union & Intersection of Subspaces, Definition of Basis Vectors – Standard Basis and Dimension of Vector Space

UNIT 3: LINEAR TRANSFORMATION

10 Hrs.

Definition of Linear Transformation – Examples, Introduction to Matrix, Matrix as Linear Transformation, Matrix Multiplication (Composition of Linear Transformations) – Three Perspectives: 1. Column, 2. Row & 3. Dot Product, Concept of Determinant – Area, Volume, Hyper-plane, etc., System of Linear Equations – Column & Null Space, Gaussian Elimination, Row Reduced Echelon Form, Eigenvalues & Eigenvectors, Inverse Matrix and Positive Definite & Semi-Definite Matrix.

UNIT 4: LINEAR PROGRAMMING

10 Hrs.

Introduction to Linear Programming – Examples, Problems in LP, Convex Sets, Corner Points, Feasibility, Basic Feasible Solutions and Simplex Method

SELF STUDY 5 Hrs.

REFERENCE BOOKS:

- Introduction to Linear Algebra, Gilbert Strang 5th Edition.
 Linear Programming, G. Hadley.

BLUEPRINT

CODE NUMBER: PGDDS2222

TITLE OF THE PAPER: LINEAR ALGEBRA

Chapter	Number of Hours	Total marks for which the questions are to be asked (including bonus questions
Unit I	10	30
Unit II	10	20
Unit III	10	30
Unit IV	10	30
Self-Study	5	
TOTAL	45	110
Maximum marks for the paper (Excluding bonus question)= 70		